ISO New England Overview and Regional Update

Connecticut General Assembly

ISO-NE PUBLIC

new england

|S0|

Energy and Technology Committee

Anne George

VICE PRESIDENT, EXTERNAL AFFAIRS AND CORPORATE COMMUNICATIONS

Eric Johnson

DIRECTOR, EXTERNAL AFFAIRS

Kerry Schlichting

EXTERNAL AFFAIRS REPRESENTATIVE

ISO New England (ISO) Has Two Decades of Experience Overseeing the Region's Restructured Electric Power System

- Regulated by the Federal Energy Regulatory Commission
- Reliability Coordinator for New England under the North American Electric Reliability Corporation
- Independent of companies in the marketplace and neutral on technology

ISO New England Performs Three Critical Roles to Ensure Reliable Electricity at Competitive Prices

Grid Operation

Coordinate and direct the flow of electricity over the region's high-voltage transmission system

Market Administration

Design, run, and oversee the markets where wholesale electricity is bought and sold

Power System Planning

Study, analyze, and plan to make sure New England's electricity needs will be met over the next 10 years

Generation and Demand Resources Are Used to Meet New England's Energy Needs

- **350** dispatchable generators in the region
- **31,000 MW** of generating capacity
- **20,600 MW** of proposed generation in the ISO Queue
 - Mostly wind and natural gas
- **5,200 MW** of generation have retired or will retire in the next few years
- 400 MW of active demand response and 2,500 MW of energy efficiency with obligations in the Forward Capacity Market*
 - Effective June 1, 2018, demand resources have further opportunities in the wholesale markets

* In the Forward Capacity Market, demand-reduction resources are treated as capacity resources.

Many Resources Compete to Supply Electricity in New England's Wholesale Markets

ISO-NE PUBLIC

- Close to 500 buyers and sellers in the markets
- **\$9.8 billion** traded in wholesale electricity markets in 2018
 - \$6.0 billion in energy markets
 - Increased costs driven by cold weather and higher wholesale electric energy prices in January
 - \$3.8 billion in capacity and ancillary services markets
 - Increased costs driven by resource retirements and higher clearing prices in Forward Capacity Market
- Extensive analysis and reporting of market results

Annual Value of Wholesale Electricity Markets (in billions)

[■] Energy Market ■ Ancillary Markets ■ Forward Capacity Market

* Data is preliminary and subject to resettlement

 7.2 million retail electricity customers drive the demand for electricity in New England (14.8 million population)

Region's all-time summer peak demand: 28,130 MW on August 2, 2006

- Region's all-time winter peak demand: 22,818 MW on January 15, 2004
- Energy efficiency (EE) and behind-the-meter (BTM) solar are **reducing** peak demand growth and overall electricity use over the next ten years

-0.2% annual growth rate for summer peak demand (with EE and BTM solar)

- -0.9% annual growth rate for overall electricity use (with EE and BTM solar)
- BTM solar is **shifting** peak demand later in the day in the summertime

Note: Without energy efficiency and solar, the region's peak demand is forecasted to grow 0.8% annually and the region's overall electricity demand is forecasted to grow 0.9% annually. Summer peak demand is based on the "90/10" forecast for extreme summer weather.

Dramatic Changes in the Energy Mix

The fuels used to produce the region's electric energy have shifted as a result of economic and environmental factors

Percent of Total **Electric Energy** Production by Fuel Type (2000 vs. 2018)

Source: ISO New England Net Energy and Peak Load by Source

Renewables include landfill gas, biomass, other biomass gas, wind, grid-scale solar, municipal solid waste, and miscellaneous fuels. This data represents electric generation within New England; it does not include imports or behind-the-meter (BTM) resources, such as BTM solar.

Lower-Emitting Sources of Energy Supply Most of New England's Electricity

- In 2018, most of the region's energy needs were met by natural gas, nuclear, imported electricity (mostly hydropower from Eastern Canada), renewables, and other low- or non-carbon-emitting resources
- Region is transitioning away from older coal and oil resources

Coal, 1% **Oil**, 1% **Hydro**, **7%** Natural Gas, Renewables, 41% 9% 2018* **Net Energy** for Load: 123,307 GWh Imports, 17% Note: Nuclear, 26% Renewables include landfill gas. biomass, other biomass gas, wind, grid-scale solar, municipal solid waste, and miscellaneous fuels. **ISO-NE PUBLIC**

* Data is preliminary and subject to resettlement

Natural Gas and Wholesale Electricity Prices Are Linked

Monthly average natural gas and wholesale electricity prices at the New England hub

Fuel \$/MMBtu

But the Natural Gas Delivery System Is Not Keeping Up with Demand

- Few interstate pipelines and liquefied natural gas (LNG) delivery points
- Regional pipelines are:
 - Built to serve heating demand, not power generation
 - Running at or near maximum capacity during winter

Pipelines

LNG facilities

Source: ISO New England

Marcellus shale

States Have Set Goals for Reductions in Greenhouse Gas Emissions: *Some Mandated, Some Aspirational*

Percent Reduction in Greenhouse Gas (GHG) Emissions Economy Wide by 2050*

The New England states are promoting GHG reductions on a state-by-state basis, and at the regional level, through a combination of legislative mandates (e.g., CT, MA, RI) and aspirational, non-binding goals (e.g., ME, NH, VT and the New England Governors and Eastern Canadian Premiers).

11

* MA, RI, NH, and VT use a 1990 baseline year for emissions reductions. CT and the NEG-ECP use a 2001 baseline. ME specifies reductions below 2003 levels that *may* be required "in the long term." For more information, see the following ISO Newswire article: <u>http://isonewswire.com/updates/2017/3/1/the-new-england-states-have-an-ongoing-framework-for-reducin.html</u>.

Notes: State RPS requirements promote the development of renewable energy resources by requiring electricity providers (electric distribution companies and competitive suppliers) to serve a minimum percentage of their retail load using renewable energy. Connecticut's Class I RPS requirement plateaus at 40% in 2030. Maine's Class I RPS requirement plateaued at 10% in 2017 and is set to expire in 2022 (but has been held constant for illustrative purposes). Massachusetts' Class I RPS requirement increases by 2% each year between 2020 and 2030, reverting back to 1% each year thereafter, with no stated expiration date. New Hampshire's percentages include the requirements for both Class I and Class II resources (Class II resources are new solar technologies beginning operation after January 1, 2006). New Hampshire's Class I and Class II RPS requirement for 'new' renewable energy plateaus at 36.5% in 2035. Vermont's 'total renewable energy' requirement plateaus at 75% in 2032; it recognizes all forms of new and existing renewable energy and is unique in classifying large-scale hydropower as renewable.

12

Wind Power Now Comprises Two Thirds of New Resource Proposals in the ISO Interconnection Queue

New Energy Storage Technologies Are Coming On Line

- **20 MW** of grid-scale battery storage projects have come on line since late 2015
- Nearly **1,200 MW** of grid-scale stand-alone energy storage projects are requesting interconnection
- New England has a successful history of operating the region's two large pumped-storage facilities, which can supply **1,800 MW** of power within 10 minutes for up to 7 hours

Energy-Efficiency and Renewable Resources Are Trending Up in New England

Energy Efficiency Is a Priority for State Policymakers

2018 State Energy-Efficiency Scorecard

Ranking of state EE efforts by the American Council for an Energy-Efficient Economy:

 Massachusetts 	1
 Rhode Island 	3
– Vermont	4
 Connecticut 	5
– Maine	14
 New Hampshire 	21

Source: American Council for an Energy-Efficient Economy

- Billions spent over the past few years and more on the horizon
 - Nearly \$4.9 billion invested from 2011 to 2016
 - ISO estimates \$10.5 billion to be invested in EE from 2019 to 2027

ISO-NE PUBLIC

16

ISO New England Forecasts Strong Growth in Solar Photovoltaic (PV) Resources

December 2017 Solar PV Installed Capacity (MW_{ac})

Cumulative Growth in Solar PV through 2027 (MW_{ac})

17

Note: The bar chart reflects the ISO's projections for nameplate capacity from PV resources participating in the region's wholesale electricity markets, as well as those connected "behind the meter." Source: Final 2018 PV Forecast (May 2018); MW values are AC nameplate.

Energy Efficiency and Behind-the-Meter Solar Are Reducing Peak Demand and Annual Energy Use

The gross peak and load forecast

The gross peak and load forecast minus existing and anticipated "behind-the-meter" (BTM) solar PV resources The gross peak and load forecast minus existing and anticipated BTM solar PV and energy efficiency

18

Note: Summer peak demand is based on the "90/10" forecast, which accounts for the possibility of extreme summer weather (temperatures of about 94° F). Source: <u>ISO New England 2018-2027 Forecast Report of Capacity, Energy, Loads, and Transmission</u> (2018 CELT Report) (May 2018)

Historic Dip in Midday Demand with Record-High Solar Power Output on April 21, 2018

At 1:30 p.m., behind-the-meter solar reduced grid demand by more than 2,300 MW

19

Map is representative of the types of projects announced for the region in recent years Developers Are Proposing Large-Scale Transmission Projects to Help Deliver Clean Energy to Load Centers

- Developers are proposing more than 15 elective transmission upgrades (ETUs) to help deliver nearly 14,000 MW of clean energy to New England load centers
 - Mostly Canadian hydro and onshore wind from northern New England

20

 Wind projects make up 65% of new resource proposals in the ISO Generator Interconnection Queue, but many are remote

ISO-NE PUBLIC

Source: ISO Interconnection Queue (January 2019)

Upcoming Opportunities for Engagement

Consumer Liaison Group

- March 14, June 13, September 5, and December 5
 - (Locations vary)
- Meeting agendas, presentations, and summaries will be posted on the <u>CLG webpage</u>
- Each state has representation on the group's coordinating committee

Regional System Plan Public Meeting

- Thursday, September 12 (Logistical details to follow)

Questions

ISO-NE PUBLIC

22